
LBL
August 1996
preliminary

Evaluations of Object Oriented Databases

for

Storage and Retrieval of BaBar Conditions Information

J. Ohnemus

Lawrence Berkeley Laboratory

Berkeley, California 94720, USA

Abstract

Object oriented database management systems have been evaluated as a possible

means of storing and retrieving conditions information (calibration and geometry data)

for the BaBar experiment. This paper describes the main features of object oriented

database management systems and presents the results of benchmark performance tests

on two commercial systems, Objectstore and Objectivity. Recommendations for the

database system best suited for use in the BaBar experiment are given.

1 Introduction

Object oriented database management systems (OODBMS) provide a convenient and power-
ful means of storing and retrieving large amounts of complex data, thus they are potentially
well suited for use in a high energy physics experiment. The main advantages of using a
commercial database system is that it eliminates the lengthy and costly process of developing
and testing an in-house database system. Two commercial object oriented database manage-
ment systems have been evaluated as potential candidates for storing conditions information
for the BaBar experiment. (Conditions information is a generic name for calibration and
geometry data.) The �rst system is Objectstore, which is made by Object Design, Inc. and
the second is Objectivity, which is produced by Objectivity, Inc.. This paper reports the
results of performance evaluations of these two systems. The purpose of these evaluations
is to make a recommendation for the choice of the database system to use in the BaBar
experiment.

The remainder of this paper is organized as follows. The main features of object oriented
database management systems are described in Section 2. Features which are speci�c to
Objectstore and Objectivity are discussed in Sections 3 and 4, respectively. The results of
benchmark tests on the two database systems are presented in Section 5. Section 6 contains
a summary of the database benchmark results along with recommendations for the database
system best suited to the needs of the BaBar experiment.

2 Object Oriented Databases

Objectstore and Objectivity both provide features commonly found in an object oriented
database system, however, their nomenclature and style for implementing the features are dif-
ferent. This section begins by de�ning some of the basic concepts associated with databases
and is followed by a description of the main features common to all object oriented database
systems.

The Objectstore and Objectivity database systems are both written inC++ and will op-
erate on most common workstations running most common operating systems. In addition,
it is also possible to compile application code with most C++ compilers. The benchmark
results presented in this paper have been obtained using the latest versions of these database
systems, namely, Objectstore 4.0 and Objectivity 3.8. Furthermore, the work was done on
a Sun Sparc 5 workstation (64 MB of RAM) running the Solaris 2.4 operating system and
using the Sun C++ 4.0 compiler.

A database management system provides persistence, which is the long-term storage
of data, plus services for the protection and use of the data. By contrast, a UNIX �le
provides only persistence. The database system provides protection against corruption due
to system or program failure. It also provides concurrency control so that multiple users can
share access to data without introducing inconsistencies into the data. Database systems also
provide query services to facilitate fast access and manipulation of large data sets. They also
provide relationship facilities to model dependencies and relationships among data instances.

1

An object oriented database management system combines the data management and query
capabilities of a traditional database management system with the power and exibility of
the C++ object oriented programming language.

Before embarking on a discussion of database features, it is important to understand the
two di�erent types of data storage: transient and persistent. Transient data exists only while
the application program is running and the data variable is in scope. Persistent data exists
in long-term storage even after the application stops running.

The basic steps to use a database are as follows.

1. Start a transaction.

2. Create a new database or open an existing database.

3. Read from or write to the database.

4. Close the database.

5. Commit or abort the transaction.

Some of the basic concepts associated with object oriented database systems are de�ned
here.

Transactions: Transactions serve to mark program segments that, from the database point
of view, appear to execute all at once or not at all. This feature is important to
prevent concurrency anomalies that can arise from the sharing of persistent data. The
transaction calls also serve to mark program segments that can be undone. This aspect
is important in preventing data corruption due to system or network failure, and also
provides the application with a useful undo facility.

Persistent Storage: Persistent storage is the long-term storage of data that exists even
after an application stops running. Persistent data objects are created or deleted by
using a system supplied overloaded version of the new or delete operator.

Schema: A schema is a set of class de�nitions. The database system needs the schema in
order to allocate or retrieve objects in persistent memory.

Schema Evolution: Schema evolution refers to the changes undergone by a database schema
during the course of the databases existence. A schema evolution facility allows one to
rede�ne the classes in a database schema.

Queries: A query facility is used to select those elements of a set that satisfy a condition
speci�ed with a C++ control expression. For example, one could select only those
objects that have RunNumber > 2001.

Version Management: Version management facilities allow multiple users to work with
multiple versions of an application.

2

Access Modes: When opening a database, the user can specify read/write or read-only
access to the database.

Indices: An index facility marks a data member as an index. This facility instructs the
system to maintain an access method which allows e�cient retrieval of objects accord-
ing to the indexed data member. Indices can be ordered (implemented as a B-tree)
or unordered (implemented as a hash table). As an example, suppose Calibration is a
class with a data member called RunNumber. If RunNumber is declared to be an index,
then Calibration objects can be e�ciently located by a query on RunNumber. Without
an index, a liner search must be used to perform the query.

Associations: Associations are relationships between classes. Associations provide higher
level capabilities than simple pointers for modeling and managing relationships between
objects. The relationships can be unidirectional or bidirectional, furthermore, they can
be one-to-one, one-to-many, many-to-one, or many-to-many.

3 Objectstore

The Objectstore database system contains many features; there are over 100 Objectstore
classes and each class has of order 10 member functions. Objectstore is thus very rich in
features, but as a consequence, it also has a relatively steep learning curve. Fortunately, only
a small subset of the many features are actually needed for a typical application program.

In Objectstore, objects which are to be persistent must �rst have their class marked in
a schema generation �le. Persistence is actually initiated by using an overloaded version of
the new operator. The user must supply a schema generation �le, an example of which is
listed here for a case consisting of three persistent classes denoted by ClassA, ClassB, and
ClassC.

#include <ostore/ostore.hh>

#include <ostore/coll.hh>

#include <ostore/manschem.hh>

#include ``ClassA.hh''

#include ``ClassB.hh''

#include ``ClassC.hh''

OS_MARK_SCHEMA_TYPE(ClassA);

OS_MARK_SCHEMA_TYPE(ClassB);

OS_MARK_SCHEMA_TYPE(ClassC);

A make�le is used to generate the necessary schema �les, which are then compiled and
linked with the application source code and Objectstore libraries to create an executable �le.
The following concepts are speci�c to Objectstore.

3

Storage: Objectstore storage has three levels of hierarchy: database, segment, and cluster.
A database is a single �le and an associated set of processes that provide locking and
data access services. (Each database is stored as a separate UNIX �le on a disk.) A
segment is a set of pages within a database and a cluster is a set of 1 to 15 contiguous
pages. Clusters are used to place related objects close to each other in order to achieve
e�ciency in both disk reads and network transfers.

Collections: A collection is an object that serves to group together other objects. Object-
store has the following subtypes of collections: set, bag, array, and list. A set is an
unordered collection that does not permit multiple occurrences of the same object. A
bag is an unordered collection that allows multiple occurrences of the same object.
Arrays and lists are ordered collections that can either allow or disallow duplicates.

4 Objectivity

In Objectivity, persistence is enabled by using inheritance from a persistent base class. As
in Objectstore, persistence is actually initiated by using an overloaded version of the new

operator. The header �les for the persistent classes must be named with the �le extension
.ddl instead of the usual .h or .hh extension. A make�le is used to process the .ddl �les,
generate the schema �les and header �les, compile the source code, link the compiled code,
and generate an executable �le. The following concepts are speci�c to Objectivity.

Storage: Objectivity uses the following storage hierarchy: federated database (highest
level), database, container, and basic object (lowest level). An application opens or
creates one federated database which contains a catalog of databases, data type in-
formation (schema), and boot �le information (lock-sever, host, etc.). The federated
database provides �le management for the other elements in the hierarchy. Any number
of databases may be opened inside the federated database. (The federated database
and each individual database are all stored as separate UNIX �les on a disk.) At the
next level, any number of containers may be opened inside a database (an Objectivity
container is roughly equivalent to an Objectstore collection). Finally, basic objects
are stored inside the containers. A container may store any number of objects. If a
container is not created or speci�ed, the stored object is placed in a default container.

Handles: A handle is a pointer to a persistent object. Handles are used to access the
federated database, databases, containers, and basic objects.

5 Benchmark Results

To evaluate and compare the performances of the Objectstore and Objectivity database
systems, a simple data model was used to conduct a number of benchmark tests. The tests
consisted of measurements of the elapsed time needed to read or write to the database under

4

a variety of conditions. The times quoted in this section always refer to the elapsed time
(wall clock time) and were obtained by using the time shell command. The disk storage
requirements for the two systems were also compared. The results of the benchmark tests
are presented in this section along with a brief description of the data model.

5.1 The Data Model

The data model used to test the database systems consisted of two persistent classes: a
calibration class containing calibration data and an index class containing ranges of run
numbers and times, as well as a pointer to the calibration object which is valid for the
speci�ed ranges. The calibration and index objects are stored in separate databases, however,
there is a one-to-one correspondence between the calibration and the index objects. The
private data members of the two classes are listed here.

class Calibration

{

private:

int _MyInt[N]; // N = 1, 10, 100, 1000, 10000

float _MyFloat;

int _date;

int _time;

int _runNumber;

};

class Index

{

private:

int _highDate;

int _highTime;

int _highRunNumber;

int _lowDate;

int _lowTime;

int _lowRunNumber;

const char* _dataStoreName;

os_Reference<Calibration> _target; // Objectstore reference

};

5.2 Write Times

The �rst set of benchmark tests consist of elapsed write times. Most of the �gures in this
paper are comprised of two parts: part a) is the result for Objectstore and part b) is the result
for Objectivity. Figure 1 shows the elapsed write time as a function of the number of objects
written to the database. The �ve curves correspond to di�erent transaction boundaries and

5

di�erent frequencies of opening and closing the databases. The curves are best explained by
indicating where the loop is placed in the main program.

Case 1: (the solid curve with � data points)

start transaction

open index database

open calibration database

Begin Loop

write objects

End Loop

close calibration database

close index database

commit transaction

Case 2: (the long-dashed curve with + data points)

start transaction

open index database

Begin Loop

open calibration database

write objects

close calibration database

End Loop

close index database

commit transaction

Case 3: (the short-dashed curve with 2 data points)

start transaction

Begin Loop

open index database

open calibration database

write objects

close calibration database

close index database

End Loop

commit transaction

Case 4: (the dotted curve with � data points)

Begin Loop

start transaction

open index database

open calibration database

6

write objects

close calibration database

close index database

commit transaction

End Loop

The solid, long-dashed, and short-dashed curves show the e�ects of the time overhead
associated with opening and closing a database. The time overhead for opening/closing a
database is larger for Objectivity. Furthermore, for Objectstore each opened database costs
the same amount of time, whereas for Objectivity, the �rst database takes more time to
open than does the second database. (Compare the vertical space between the solid, long-
dashed, and short-dashed curves.) The dotted curve illustrates that starting and committing
a transaction is a very time consuming task. The dotted curve is the only case in which
Objectivity has faster write times. This indicates the Objectivity has a lower transaction
overhead. The results so far have been for the time to create a new database and write n
objects to it. The dot-dash curve is for the same loop as the solid curve, but now the n

objects are written to an existing database. For Objectivity, the write time is reduced by
a constant o�set of about 4 seconds. For Objectstore, the write time is reduced by about
4 seconds for a small number of objects (n < 1000), however, the time reduction becomes
negligible for a large number of objects (n � 10000). The curves in Fig. 1 are for calibration
data objects with the data member MyInt[1].

The e�ect of the object size on the write time is illustrated in Fig. 2. The calibration
object size was varied by changing the size of the MyInt[N] data member; the solid, long-
dashed, short-dashed, and dotted curves are the elapsed write times for N = 1; 100; 1000,
and 10000, respectively. The program loop is that of Case 1. Objectstore has faster write
times for small objects (MyInt[1] and MyInt[100]), while Objectivity is faster for large
objects (MyInt[1000] and MyInt[10000]). The Objectivity results are less sensitive to the
object size than are the Objectstore results.

The write speed can be estimated from the slope of the lines in Fig. 2. For the dotted
curves (corresponding to MyInt[10000]), the write speeds are 0.17 sec/object and 0.13 sec/object
for Objectstore and Objectivity, respectively. The object size is about 0.04 MB, thus these
write speeds correspond to 0.23 MB/sec and 0.31 MB/sec for Objectstore and Objectivity,
respectively. These rates should be compared with the raw Unix write speed of 1.1 MB/sec
which was obtained by writing objects directly to a Unix �le. The above database write
speeds correspond to 21% and 28% of the raw Unix write speed for Objectstore and Objec-
tivity, respectively.

5.3 Read Times

The next set of benchmark results are for elapsed read times. The elapsed read time is the
time needed to start a transaction, open the index database, �nd n random objects using a
query search, close the database, and commit the transaction. A database was �rst created

7

by assigning the data members of the ith index object the following values:

lowRunNumber = i � 10 ; (1)

highRunNumber = i � 10 + 9 ; (2)

where 1 � i � M and is M the total number of objects in the database. Thus the
index objects form the sequence (lowRunNumber; highRunNumber) = (10; 19), (20; 29),
(30; 39); : : : ; (M; 0) where highRunNumber = 0 in the last object indicates this is the last
object in the database. To make the read test, a random run number between 10 and M+10
was generated,

runNumber = x �M + 10 ; x 2 (0; 1) ; (3)

and a query search was done for the index object satisfying

runNumber � lowRunNumber && runNumber � highRunNumber : (4)

Figure 3 shows the elapsed read time as a function of the number of objects read for databases
containing 1000 and 10000 objects. For the query search in Eq. (4), the Objectivity read
time is signi�cantly faster than the Objectstore read time. The read rate, which includes the
search time, can be derived from the slope of the curves. For 1000 objects in the database,
the read rates are 64 ms/object for Objectstore and 36 ms/object for Objectivity. Figure 3
also shows that as the number of objects in the database increases, the Objectstore read
time degrades much more seriously than does the Objectivity read time. This indicates
that Objectivity has better scaling performance. A quantitative measure of the scaling
performance can be obtained by forming the ratio of the slopes of the solid to dotted lines:

S =
dt=dn (1000 objects in db)

dt=dn (10000 objects in db)
: (5)

The scaling factor has the value S = 1 when the read rate is independent of the database
size. In practice, the read rate decreases as the number of objects in the database increases,
thus 0 < S < 1, with a smaller value of S indicating a poorer scaling performance. The scale
factors derived from Fig. 3 are S = 0:19 for Objectstore and S = 0:59 for Objectivity.

The e�ect of the calibration object size on the read time is illustrated in Fig. 4. The
calibration object size was varied by changing the size of the MyInt[N] data member.
Results are shown for object sizes corresponding to N = 1; 1000, and 10000. To a �rst
approximation, the read times should be independent of the calibration object size since
the calibration database is not accessed; only the index database is searched and a pointer
to the calibration object is returned. Figure 4 shows that the calibration object size has
little dependence on the read time. The Objectstore results show only a slight increase in
read time with increasing calibration object size. The Objectivity results for MyInt[1] and
MyInt[1000] exhibit this same behavior, whereas the MyInt[10000] read times fall slightly
below the MyInt[1] results. This anomalous behavior is probably due to the fact that the
MyInt[1] and MyInt[1000] results were made when the disk was 97% full and thus heavily

8

fragmented, whereas the MyInt[10000] results were made after the disk was cleared and
only 75% full.

The e�ect of transactions on the read time are illustrated in Fig. 5. There are 1000
objects in the databases and the calibration objects contain the data-member MyInt[1].
For the solid curve, a transaction is started, the index database opened, n random objects
are queried, the database is closed, and the transaction is committed (this is the same as the
solid curves in Figs. 3 and 4). For the long-dashed (short-dashed) curves, a new transaction
was started/committed after reading every 10 (100) objects. The read time increases with the
frequency of the transactions. Increasing the transaction frequency degrades the Objectstore
read times more than it does the Objectivity read times. This indicates that the transaction
overhead is more signi�cant for Objectstore that it is for Objectivity. The transaction
overhead can be estimated by comparing the times on the curves in Fig. 5 for a �xed number
of objects. For example, when the number of objects is n = 5000, the data points on
the solid, dotted, and dashed curves represent 1, 50, and 500 transactions, respectively.
Taking the time di�erence between the solid and dotted curves at n = 5000, and dividing by
50�1 = 49 transactions, yields 0.87 sec/transaction for Objectstore and 0.28 sec/transaction
for Objectivity. These numbers are worst case estimates of the cost per transaction.

Figure 6 shows the elapsed time to read one object as a function of the object's position
in the database. The object's position is denoted by a real number between 0 and 1, with
0 (1) representing the �rst (last) object in the database [the object's position is equivalent
to x in Eq. (3)]. Results are shown for databases containing 1000 and 10000 objects. The
read time includes the time to start a transaction, open the index database, �nd the object
corresponding to a randomly generated run number, close the database, and commit the
transaction. This process was repeated 100 times to create the data points shown in the
�gure. The mean and standard deviation of the 100 read times are given on the �gure.
Increasing the database size from 1000 to 10000 objects has little e�ect on the Objectivity
read time, but it increases the Objectstore read time by about one second. This once again
shows that Objectivity has better scaling behavior in the read mode. A prominent di�erence
between the Objectstore and Objectivity results is that the uctuations in the read times
are much larger for Objectstore then they are for Objectivity.

Figure 7 shows the elapsed read time as a function of the number of databases that
are opened, searched, and closed. To make this �gure, the calibration class, which was
described at the beginning of this section, was cloned into 10 distinct classes (Calibration0,
Calibration1, ... etc.) and 10 pairs of databases where created. For the solid curve, the last
object in a database consisting of 2 objects was read. For the long-dashed and short-dashed
curves, a di�erent random object was queried in each database which contained 1000 objects.
For the long-dashed curve, a transaction was started and committed for each database,
whereas for the short-dashed curve, a single transaction was used for all the databases. Once
again, Objectivity has faster read times than Objectstore, especially for the short-dashed
and long-dashed curves which involve query searches. Comparison of the solid curves shows
that in the read mode, Objectivity has a smaller overhead for opening/closing databases.
Comparison of the short-dashed and long-dashed curves shows that the transaction overhead

9

time is more signi�cant for Objectstore that it is for Objectivity; similar conclusions were
drawn from Fig. 5.

The time needed to open and close a database can be estimated from the slope of the
curves in Fig. 7. Since the solid curves do not involve any search time (the last object in
the database is simply read), they give the best estimate for the database open/close time.
The estimated times are 1.17 sec/db for Objectstore and 0.89 sec/db for Objectivity. The
one-time overhead per application can be estimated by the �rst data-point on the solid line.
The one-time overhead is 4.62 sec for Objectstore and 4.53 sec for Objectivity.

In Figure 7 a new database was used for each type of calibration object. This storage
scheme has a relatively high cost associated with opening each database. An alternative
storage scheme would be to put the indices for each type of calibration object into their own
container. The elapsed read time verse the number of containers opened is shown in Fig. 8.
The advantage of this storage scheme is that the time overhead associated with opening a
container is very small, as is evident from the atness of the curves.

5.4 Disk Storage Requirements

The physical sizes of the Objectstore and Objectivity databases are compared in Fig. 9
where the database size is plotted as a function of the number of objects in the database.
Recall that the data model consists of a calibration database and an index database, with
a one-to-one correspondence between the objects in each database. Results are shown for
calibration objects of various sizes. The calibration object size was varied by changing the
number of elements in the data member MyInt[N]; results are shown for N = 1; 10; 100,
and 1000. (The size of the index database is independent of the calibration object size.)

The calibration database sizes are very similar for Objectstore and Objectivity when
the number of objects is large (n � 10000). For a small number of objects (n < 1000),
the Objectivity database is slightly smaller in size, indicating that Objectivity has a lower
overhead per object. In contrast, for n > 2000 the index database is larger for Objectivity
than it is for Objectstore, indicating that Objectivity has a higher overhead associated with
its indices. It should also be noted that Objectivity has a federated database which is about
1 MB in size for this data model. The federated database contains a catalog of databases,
data type information (schema), and boot �le information (lock-sever, host, etc.).

6 Conclusions and Recommendations

The feasibility of using object oriented database management systems to store and retrieve
conditions information for the BaBar experiment has been examined. Two commercial object
oriented database management systems, Objectstore and Objectivity, have been evaluated
and compared. The writing, reading, and disk storage performance of the two systems
has been measured in a series of benchmark tests. The goal of this study is to make a
recommendation for the choice of the database system to use in the BaBar experiment. A

10

summary of the most important performance characteristics for the two database systems is
given in the following outline.

Disk Storage Requirements: The disk storage requirements of the two database sys-
tems are very similar and thus disk storage performance is not a factor for selecting a
database system.

Writing: Objectstore has a faster write speed for small objects while Objectivity is faster for
large objects. In the write mode, Objectivity has a higher overhead for opening/closing
a database, whereas Objectstore has a higher overhead for starting/committing a trans-
action. The the write performance is very dependent on the data model and on the
software design. Fortunately, writing is a one-time operation and the write perfor-
mance is not a crucial factor in choosing a database system. Since neither system
exhibits a clear superiority in writing performance, either system would be acceptable
for use in the BaBar experiment.

Reading: In all of the read-search benchmark tests, Objectivity clearly out performs Ob-
jectstore: Objectivity has faster read-search times and exhibits better scaling behav-
ior. Furthermore, in the read mode, Objectivity also has smaller overheads for start-
ing/committing transactions and opening/closing databases. In o�-line analysis, the
read-search performance of the database is the most important feature to consider
when selecting a database system.

A summary of the most important performance measurements for Objectstore and Ob-
jectivity is given in Table 1. In general, Objectivity exhibits better performance in all of the
measured categories, and especially in the critical area of read-search performance. Based
on its superior read-search performance and scaling performance, Objectivity is clearly the
better database system for use in the BaBar experiment. We therefore recommend that the
BaBar collaboration adopt the Objectivity database system for the storage and retrieval of
conditions information.

In addition to the performance results already cited, there are other non-technical reasons
for selecting Objectivity for use in the BaBar experiment. First of all, Objectivity has been
used extensively by the CERN RD46 collaboration. This group has been doing research
and development work on object oriented software technology for use in high energy physics
experiments. BaBar could bene�t from the experience and published results of the RD46
collaboration. Finally, Objectivity has been receptive to granting educational discounts on
licenses for their software. This is an important consideration since the BaBar computing
budget is very limited.

Now that a database system has been selected, the next step is to develop prototype
code for storing and retrieving conditions information for the BaBar experiment. The goal
is to make an interface such that the database system calls are invisible to the user. This is
important since it will relieve the user from the time consuming task of learning how to use
the database system. Development of the prototype code is currently in progress.

11

References

[1] ObjectstoreC++ Application Programming Interface User Guide, Object Design, Inc.,
Burlington, MA, 1995.

[2] Objectivity/DB C++ Developer, Objectivity, Inc., Mountain View, CA, 1995.

Quantity Objectstore Objectivity
One-time overhead per application 4.6 sec 4.5 sec
Cost per transaction 0.87 sec 0.28 sec
Cost per db open/close 1.17 sec 0.89 sec
db write/Unix write 0.21 0.28
Read-search access performance 64 ms/object 36 ms/object
Scaling performance 0.19 0.59

Table 1: A summary of performance measurements for Objectstore and Objectivity.

12

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d

w
rit

e
tim

e
(s

ec
on

ds
)

number of objects

a) Objectstore
Case 1, create new db
Case 2, create new db
Case 3, create new db
Case 4, create new db

Case 1, use existing db

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d

w
rit

e
tim

e
(s

ec
on

ds
)

number of objects

b) Objectivity

Case 1, create new db
Case 2, create new db
Case 3, create new db
Case 4, create new db

Case 1, use existing db

Figure 1: Elapsed write time as a function of the number of objects written to the database
for various transaction scenarios. The solid, long-dashed, short-dashed, and dotted curves
correspond to transaction cases 1, 2, 3, and 4, respectively, which are described in the text.
These write times include the time to create a new database. The dot-dashed curve is also
for transaction case 1, but the objects are written to an existing database. Parts a) and b)
are for Objectstore and Objectivity, respectively.

13

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d

w
rit

e
tim

e
(s

ec
on

ds
)

number of objects

a) Objectstore
_MyInt[1]

_MyInt[100]
_MyInt[1000]

_MyInt[10000]

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d

w
rit

e
tim

e
(s

ec
on

ds
)

number of objects

b) Objectivity
_MyInt[1]

_MyInt[100]
_MyInt[1000]

_MyInt[10000]

Figure 2: Elapsed write time as a function of the number of objects written to the database
for objects of various sizes. The object size is varied by changing the size of the MyInt[N]
data member. The solid, long-dashed, short-dashed, and dotted curves are for object sizes
corresponding to N = 1; 100; 1000; and 10000, respectively. Parts a) and b) are for Object-
store and Objectivity, respectively.

14

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d

re
ad

 ti
m

e
(s

ec
on

ds
)

number of objects

a) Objectstore

1000 objects in db
10000 objects in db

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d

re
ad

 ti
m

e
(s

ec
on

ds
)

number of objects

b) Objectivity

1000 objects in db
10000 objects in db

Figure 3: Elapsed read time as a function of the number of objects read from the database.
The solid (dashed) line is for a database containing 1000 (10000) objects. Parts a) and b)
are for Objectstore and Objectivity, respectively.

15

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d

re
ad

 ti
m

e
(s

ec
on

ds
)

number of objects

a) Objectstore

1000 objects in db

_MyInt[1]
_MyInt[1000]

_MyInt[10000]

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d

re
ad

 ti
m

e
(s

ec
on

ds
)

number of objects

b) Objectivity

1000 objects in db

_MyInt[1]
_MyInt[1000]

_MyInt[10000]

Figure 4: Elapsed read time as a function of the number of objects read from the database for
objects of various sizes. The object size is varied by changing the size of the MyInt[N] data
member. The solid, long-dashed, and short-dashed curves are for object sizes corresponding
to N = 1; 1000, and 10000, respectively. Parts a) and b) are for Objectstore and Objectivity,
respectively.

16

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d

re
ad

 ti
m

e
(s

ec
on

ds
)

number of objects

a) Objectstore

1000 objects in db

1 transaction
transaction every 10 objects

transaction every 100 objects

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

el
ap

se
d

re
ad

 ti
m

e
(s

ec
on

ds
)

number of objects

b) Objectivity

1000 objects in db

1 transaction
transaction every 10 objects

transaction every 100 objects

Figure 5: Elapsed read time as a function of the number of objects read from the database for
various transaction intervals. For the solid line, one transaction was used for the entire read
process. For the long-dashed (short-dashed) line, a new transaction was started after reading
every 10 (100) objects. Parts a) and b) are for Objectstore and Objectivity, respectively.

17

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

el
ap

se
d

re
ad

 ti
m

e
(s

ec
on

ds
)

object position

a) Objectstore

: read time = (4.65 +- 0.69) sec
: read time = (5.57 +- 0.38) sec

1000 objects in db
10000 objects in db

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

el
ap

se
d

re
ad

 ti
m

e
(s

ec
on

ds
)

object position

b) Objectivity

: read time = (4.38 +- 0.39) sec
: read time = (4.32 +- 0.08) sec

1000 objects in db
10000 objects in db

Figure 6: Elapsed time to read one object as a function of the object's position in the
database. The solid (dashed) curve is for a database containing 1000 (10000) objects. Parts
a) and b) are for Objectstore and Objectivity, respectively. The spikes which go o� the scale
are not reproduceable.

18

0

5

10

15

20

25

30

0 2 4 6 8 10

el
ap

se
d

re
ad

 ti
m

e
(s

ec
on

ds
)

number of databases

a) Objectstore

2 _MyInt[100] objects
1000 _MyInt[100] objects, multiple transactions

1000 _MyInt[100] objects, one transaction

0

5

10

15

20

25

30

0 2 4 6 8 10

el
ap

se
d

re
ad

 ti
m

e
(s

ec
on

ds
)

number of databases

b) Objectivity

2 _MyInt[100] objects
1000 _MyInt[100] objects, multiple transactions

1000 _MyInt[100] objects, one transaction

Figure 7: Elapsed read time as a function of the number of opened databases. A single object
was read from each opened database. For the solid curve, the last element of a database
consisting of 2 objects was read. For the dashed curves, a random object was queried from
a database consisting of 1000 objects. For the short-dashed curve, a single transaction was
used to read all the databases, whereas for the long-dashed curve, separate transactions were
used to read each database. Parts a) and b) are for Objectstore and Objectivity, respectively.

19

0

5

10

15

20

25

30

0 2 4 6 8 10

el
ap

se
d

re
ad

 ti
m

e
(s

ec
on

ds
)

number of containers

Objectivity
2 _MyInt[100] objects

1000 _MyInt[100] objects

Figure 8: Elapsed read time as a function of the number of opened containers. A single object
was read from each opened container. For the solid curve, the last element of a database
consisting of 2 objects was read. For the dashed curve, a random object was queried from a
container consisting of 1000 objects. A single transaction was used to read all the containers.

20

0

1

2

3

4

5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

da
ta

ba
se

 s
iz

e
(M

B
)

number of objects

a) Objectstore

calibration db, _MyInt[1]
calibration db, _MyInt[10]
calibration db, _MyInt[100]
calibration db, _MyInt[1000]

index db

0

1

2

3

4

5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

da
ta

ba
se

 s
iz

e
(M

B
)

number of objects

b) Objectivity

calibration db, _MyInt[1]
calibration db, _MyInt[10]
calibration db, _MyInt[100]
calibration db, _MyInt[1000]

index db

Figure 9: Size of the database as a function of the number of objects in the database for
objects of various sizes. The calibration object size is varied by changing the size of the
MyInt[N] data member. The solid, long-dashed, short-dashed, and dotted curves are for
calibration object sizes corresponding to N = 1; 10; 100, and 1000, respectively. The dot-
dashed curve is for the size of the index database. Parts a) and b) are for Objectstore and
Objectivity, respectively.

21

